[1]龔晨,梁斯佳,周建光.場效應放大樣品堆積行為仿真[J].哈爾濱工程大學學報,2021,42(5):664-669.[doi:10.11990/jheu.202001007]
 GONG Chen,LIANG Sijia,ZHOU Jianguang.Simulation on field-amplified sample stacking behavior[J].Journal of Harbin Engineering University,2021,42(5):664-669.[doi:10.11990/jheu.202001007]
點擊復制

場效應放大樣品堆積行為仿真(/HTML)
分享到:

《哈爾濱工程大學學報》[ISSN:1006-6977/CN:61-1281/TN]

卷:
42
期數:
2021年5期
頁碼:
664-669
欄目:
出版日期:
2021-05-05

文章信息/Info

Title:
Simulation on field-amplified sample stacking behavior
作者:
龔晨 梁斯佳 周建光
浙江大學 浙江大學智能系統與控制研究所, 浙江 杭州 310027
Author(s):
GONG Chen LIANG Sijia ZHOU Jianguang
Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
關鍵詞:
樣品富集方法物質擴散傳遞有限元分析電滲流仿真分析COMSOL Multiphysics電泳樣品預處理
分類號:
V488
DOI:
10.11990/jheu.202001007
文獻標志碼:
A
摘要:
為研究場效應放大的樣品堆疊存在不均勻的電滲流,造成分析物富集受分子擴散和對流擴散影響的理論機制,在自主構建的場效應放大的樣品堆疊物理模型基礎上,基于COMSOL Multiphysics軟件耦合了電勢場、電導率場、流體場、分析物濃度場,提出了跨數量級疏密空間與時間定標分析的仿真計算策略。仿真結果表明:可通過優化微納通道長度與富集時間,來控制分子擴散和對流擴散的影響,并獲得了較好的分析物富集結果,富集倍比與電壓值呈正相關。該研究結果可以為在微納通道中富集帶電分析物提供理論基礎。

參考文獻/References:

[1] OSBOURN D M, WEISS D J, LUNTE C E. Online preconcentration methods for capillary electrophoresis[J]. Electrophoresis, 2015, 21(14):2768-2779.
[2] ZHANG Chanxuan, THORMANN W. Head-column field-amplified sample stacking in binary system capillary electrophoresis:a robust approach providing over 1000-fold sensitivity enhancement[J]. Analytical chemistry, 1996, 68(15):2523-2532.
[3] CHIEN R L, BURGI D S. Field amplified sample injection in high-performance capillary electrophoresis[J]. Journal of chromatography A, 1991, 559(1/2):141-152.
[4] CHIEN R L, BURGI D S. On-column sample concentration using field amplification in CZE[J]. Analytical chemistry, 1992, 64(8):489A-496A.
[5] GONG Maojum, WEHMEYER K R, LIMBACH P A, et al. On-line sample preconcentration using field-amplified stacking injection in microchip capillary electrophoresis[J]. Analytical chemistry, 2006, 78(11):3730-3737.
[6] GOPMANDAL P P, BHATTACHARYYA S. Numerical study on isotachophoretic separation of ionic samples in microfluidics[M]//BASU S K, KUMAR N. Modelling and Simulation of Diffusive Processes. Cham:Springer, 2014:97-117.
[7] GOPMANDAL P P, BHATTACHARYYA S. Effects of convection on isotachophoresis of electrolytes[J]. Journal of fluids engineering, 2015, 137(8):081202.
[8] BAHGA S S, SANTIAGO J G. Coupling isotachophoresis and capillary electrophoresis:a review and comparison of methods[J]. Analyst, 2013, 138(3):735-754.
[9] KITAGAWA F, KAWAI T, OTSUKA K. On-line sample preconcentration by large-volume sample stacking with an electroosmotic flow pump (LVSEP) in microscale electrophoresis[J]. Analytical sciences, 2013, 29(12):1129-1139.
[10] BRITZ-MCKIBBIN P, CHEN D D Y. Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction[J]. Analytical chemistry, 2000, 72(6):1242-1252.
[11] BAHGA S S, BERCOVICI M, SANTIAGO J G. Robust and high-resolution simulations of nonlinear electrokinetic processes in variable cross-section channels[J]. Electrophoresis, 2012, 33(19/20):3036-3051.
[12] JUNG B, BHARADWAJ R, SANTIAGO J G. Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis[J]. Electrophoresis, 2003, 24(19/20):3476-3483.
[13] BAHGA S S, MOZA R, KHICHAR M. Theory of multi-species electrophoresis in the presence of surface conduction[J]. Proceedings of the royal society A:Mathematical, Physical and Engineering Sciences, 2016, 472(2186):20150661.
[14] MANI A, BAZANT M Z. Deionization shocks in microstructures[J]. Physical review E, 2011, 84(6 Pt 1):061504.
[15] PORADA S, BORCHARDT L, OSCHATZ M, et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization[J]. Energy & environmental science, 2013, 6(12):3700-3712.

備注/Memo

備注/Memo:
收稿日期:2020-01-04。
基金項目:國家重點研發計劃(2016YFC0800900).
作者簡介:龔晨,男,碩士研究生;周建光,男,教授,博士生導師.
通訊作者:周建光,E-mail:jgzhou@zju.edu.cn.
更新日期/Last Update: 2021-04-26
看真人视频a级毛片