[1]蔣昌波,徐進,屈科.雙自由度子母管線渦激振動數值研究[J].哈爾濱工程大學學報,2021,42(5):729-737.[doi:10.11990/jheu.201912034]
 JANG Changbo,XU Jin,QU Ke.Numerical investigation on vortex-induced vibration in two-degree-of-freedom piggyback pipeline[J].Journal of Harbin Engineering University,2021,42(5):729-737.[doi:10.11990/jheu.201912034]
點擊復制

雙自由度子母管線渦激振動數值研究(/HTML)
分享到:

《哈爾濱工程大學學報》[ISSN:1006-6977/CN:61-1281/TN]

卷:
42
期數:
2021年5期
頁碼:
729-737
欄目:
出版日期:
2021-05-05

文章信息/Info

Title:
Numerical investigation on vortex-induced vibration in two-degree-of-freedom piggyback pipeline
作者:
蔣昌波123 徐進1 屈科123
1. 長沙理工大學 水利工程學院, 湖南 長沙 410114;
2. 水沙科學與水災害防治湖南省重點實驗室, 湖南 長沙 410114;
3. 洞庭湖水環境治理與生態修復湖南省重點實驗室, 湖南 長沙 410114
Author(s):
JANG Changbo123 XU Jin1 QU Ke123
1. School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China;
2. Key Laboratory of Water Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China;
3. Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
關鍵詞:
浸沒邊界方法子母管線雙自由度渦激振動流固耦合鎖定區間雷諾數數值模擬
分類號:
P751
DOI:
10.11990/jheu.201912034
文獻標志碼:
A
摘要:
為了研究雙自由度子母管線周圍的繞流特征,本文采用高精度浸沒邊界方法模擬了不同布置條件下雙自由度子母管線的渦激振動特性,探討子母管線質量比、間距比、空隙比和角度對子母管線低雷諾數振動特性及水動力的影響。結果表明:隨著子母管線的質量比和間距比的增大,管線渦激振動的最大振幅逐漸減小,發生鎖定的區間也變窄。不同角度對子母管線渦激振動的抑制作用不同,子管與母管并列時對子母管線渦激振動的抑制作用更強。另外通過對流向和橫向耦合振動的分析可發現,低質量比時流向振動對橫向振動的振幅和頻率影響較大,而高質量比時這種影響相對較小。

參考文獻/References:

[1] 崔金聲, 高福平, 韓希霆, 等. 海流作用下子母管結構橫向渦激振動[J]. 海洋工程, 2012, 30(1):18-24, DOI:10.3969/j.issn.1005-9865.2012.01.003. CUI Jinsheng, GAO Fuping, HAN Xiting, et al. Vortex-induced transverse vibration of piggyback pipelines in steady current[J]. The ocean engineering, 2012, 30(1):18-24, DOI:10.3969/j.issn.1005-9865.2012.01.003.
[2] 楊琥, 倪浩, 朱曉環. 一種新型的置換海底子母管道技術[C]//2007年度海洋工程學術會議論文集. 貴陽:中國造船工程學會, 2007:8. YANG Hu, NI Hao, ZHU Xiaohuan. An applicable replacement bundled pipeline structure for offshore marginal oilfield development[C]//Proceedings of 2007 Ocean Engineering Conference. Guiyang:Chinese Society of Shipbuilding Engineering, 2007:8.
[3] ZHAO Ming, CHENG Liang, TENG Bin, et al. Numerical simulation of viscous flow past two circular cylinders of different diameters[J]. Applied ocean research, 2005, 27(1):39-55, DOI:10.1016/j.apor.2004.10.002.
[4] KHALAK A, WILLIAMSON C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of fluids and structures, 1996, 10(5):455-472, DOI:10.1006/jfls.1996.0031.
[5] SANCHIS A, SAELEVIK G, GRUE J. Two-degree-of-freedom vortex-induced vibrations of a spring-mounted rigid cylinder with low mass ratio[J]. Journal of fluids and structures, 2008, 24(6):907-919, DOI:10.1016/j.jfluidstructs.2007.12.008.
[6] PRASANTH T K, MITTAL S. Flow-induced oscillation of two circular cylinders in tandem arrangement at low Re[J]. Journal of fluids and structures, 2009, 25(6):1029-1048, DOI:10.1016/j.jfluidstructs.2009.04.001.
[7] 谷家揚, 楊琛, 朱新耀, 等. 質量比對圓柱渦激特性的影響研究[J]. 振動與沖擊, 2016, 35(4):134-140, DOI:10.13465/j.cnki.jvs.2016.04.022. GU Jiayang, YANG Chen, ZHU Xinyao, et al. Influences of mass ratio on vortex induced vibration characteristics of a circular cylinder[J]. Journal of vibration and shock, 2016, 35(4):134-140, DOI:10.13465/j.cnki.jvs.2016.04.022.
[8] 陳威霖, 及春寧, 許棟. 小間距比下串列雙圓柱渦激振動數值模擬研究:振動響應和流體力[J]. 振動與沖擊, 2018, 37(23):261-269, DOI:10.13465/j.cnki.jvs.2018.23.036. CHEN Weilin, JI Chunning, XU Dong. Numerical simulations for VIVs of two tandem cylinders with small spacing ratios:vibration responses and hydrodynamic forces[J]. Journal of vibration and shock, 2018, 37(23):261-269, DOI:10.13465/j.cnki.jvs.2018.23.036.
[9] 張大可, 趙西增, 胡子俊, 等. 低雷諾數下串列雙圓柱渦激振動的數值模擬[J]. 哈爾濱工程大學學報, 2018, 39(2):247-253, DOI:10.11990/jheu.201610018. ZHANG Dake, ZHAO Xizeng, HU Zijun, et al. Numerical study of flow-induced vibration of tandem circular cylinders at low Reynolds number[J]. Journal of Harbin Engineering University, 2018, 39(2):247-253, DOI:10.11990/jheu.201610018.
[10] CHENG Xiaofei, WANG Yongxue, WANG Guoyu. Hydrodynamic forces on a large pipeline and a small pipeline in piggyback configuration under wave action[J]. Journal of waterway, port, coastal, and ocean engineering, 2011, 138(5):394-405, DOI:10.1061/(ASCE)WW.1943-5460.0000144.
[11] ZANG Zhipeng, GAO Fuping, CUI Jinsheng. Physical modeling and swirling strength analysis of vortex shedding from near-bed piggyback pipelines[J]. Applied ocean research, 2013, 40:50-59, DOI:10.1016/j.apor.2013.01.001.
[12] ZANG Zhipeng, GAO Fuping. Steady current induced vibration of near-bed piggyback pipelines:configuration effects on VIV suppression[J]. Applied ocean research, 2014, 46:62-69, DOI:10.1016/j.apor.2014.02.004.
[13] 秦偉. 雙自由度渦激振動的渦強尾流振子模型研究[D]. 哈爾濱:哈爾濱工程大學, 2013. QIN Wei. Study on vortex induced vibration in two degrees of freedom using vortex strength wake oscillator[D]. Harbin:Harbin Engineering University, 2013.
[14] 陳正壽, 趙宗文, 張國輝, 等. 質量比對剛性圓柱體渦激振動影響的研究[J]. 振動與沖擊, 2017, 36(11):248-254, DOI:10.13465/j.cnki.jvs.2017.11.038. CHEN Zhengshou, ZHAO Zongwen, ZHANG Guohui, et al. Effects of mass ratio on vortex-induced vibration of a rigid cylinder[J]. Journal of vibration and shock, 2017, 36(11):248-254, DOI:10.13465/j.cnki.jvs.2017.11.038.
[15] BORAZJANI I, GE Liang, SOTIROPOULOS F. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies[J]. Journal of computational physics, 2008, 227(16):7587-7620, DOI:10.1016/j.jcp.2008.04.028.
[16] AHN H T, KALLINDERIS Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes[J]. Journal of computational physics, 2006, 219(2):671-696, DOI:10.1016/j.jcp.2006.04.011.

備注/Memo

備注/Memo:
收稿日期:2019-12-17。
基金項目:國家自然科學基金重點項目(51839002);國家自然科學基金項目(51809021,51879015).
作者簡介:蔣昌波,男,教授,博士生導師;屈科,男,副教授,碩士生導師.
通訊作者:屈科,E-mail:qukeforjc@126.com.
更新日期/Last Update: 2021-04-26
看真人视频a级毛片