[1]王賢成,李偉,劉毅,等.臍帶纜拉彎組合疲勞試驗機恒拉力控制[J].哈爾濱工程大學學報,2021,42(5):632-640.[doi:10.11990/jheu.201910024]
 WANG Xiancheng,LI Wei,LIU Yi,et al.Constant tension control of umbilical cable tension-bending combined fatigue testing machine[J].Journal of Harbin Engineering University,2021,42(5):632-640.[doi:10.11990/jheu.201910024]
點擊復制

臍帶纜拉彎組合疲勞試驗機恒拉力控制(/HTML)
分享到:

《哈爾濱工程大學學報》[ISSN:1006-6977/CN:61-1281/TN]

卷:
42
期數:
2021年5期
頁碼:
632-640
欄目:
出版日期:
2021-05-05

文章信息/Info

Title:
Constant tension control of umbilical cable tension-bending combined fatigue testing machine
作者:
王賢成12 李偉1 劉毅13 聞中翔3
1. 浙江大學 流體動力傳動與控制國家重點實驗室, 浙江 杭州 310027;
2. 寧波大學 科學技術學院, 浙江 寧波 315100;
3. 浙江大學 寧波理工學院, 浙江 寧波 315100
Author(s):
WANG Xiancheng12 LI Wei1 LIU Yi13 WEN Zhongxiang3
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;
2. College of Science & Technology, Ningbo University, Ningbo 315100, China;
3. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
關鍵詞:
臍帶纜恒拉力控制器自適應系統神經網絡最小均值算法深海設備疲勞壽命動態纜
分類號:
TP271.31
DOI:
10.11990/jheu.201910024
文獻標志碼:
A
摘要:
由于深海臍帶纜的變拉伸剛度特性、臥式加載條件下臍帶纜過長、疲勞試驗機彎曲端伸縮狀態切換而引入沖擊噪聲等因素,導致恒拉力控制難度高、精度低。在對疲勞試驗機控制系統研究的基礎上,將模型參考自適應控制算法應用于該試驗機的恒拉力控制系統中。針對液壓系統中存在的非線性時變參數,提出了自適應線性神經網絡與歸一化最小均值M估計(ADALINE-NLMM)的自適應控制策略。其利用系統估計的輸出誤差調整自適應的神經網絡的權值,同時利用最小均值M估計算法調整系統中的不確定參數。根據液壓系統內部頻率變化而跟蹤參考模型的輸出,削弱脈沖噪聲的干擾,提高了控制系統的魯棒性。不同彎曲角度下臍帶纜的靜態拉伸試驗表明:系統的靜態跟蹤誤差最大不超過3%,平均跟蹤誤差接近0.3%。一定角度范圍內動態拉伸試驗表明,臍帶纜拉伸端施加恒定的拉力的控制誤差不超過10%。結果表明:提出的模型具有良好的恒拉力控制精度和魯棒性。

參考文獻/References:

[1] 易吉梅. 臍帶纜在海洋深水石油平臺的應用現狀及前景分析[J]. 中國修船, 2014, 27(4):55-57. YI Jimei. Application status and vistas of the umbilical-cord cable on offshore platform in deep water[J]. China shiprepair, 2014, 27(4):55-57.
[2] YILDIRIM H C, LEITNER M, MARQUIS G B, et al. Application studies for fatigue strength improvement of welded structures by high-frequency mechanical impact (HFMI) treatment[J]. Engineering structures, 2016, 106:422-435.
[3] DA SILVA V R M, SAGRILO L V S, VIGNOLES M A. Fatigue reliability assessment for flexible riser armour wires[C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. Newfoundland, 2015.
[4] ELOSTA H, HUANG S, INCECIK A. Wave loading fatigue reliability and uncertainty analyses for geotechnical pipeline models[J]. Ships and offshore structures, 2014, 9(4):450-463.
[5] HOLTAM C M, BAXTER D P, THOMSON R C, et al. Influence of fatigue loading on the engineering critical assessment of steel catenary risers in sour deepwater oil and gas developments[J]. Key engineering materials, 2009, 413-414:313-325.
[6] API. ANSI/API SPEC17E-1998, Specification for subsea production control umbilicals[S]. API, 1998.
[7] ISO. BS ISO 13628-5:2009, Petroleum and natural gas industries. Design and operation of subsea production systems. Part 5. Subsea umbilicals[S]. ISO, 2009.
[8] SIVASELVAN M V, REINHORN A M, SHAO Xiaoyun, et al. Dynamic force control with hydraulic actuators using added compliance and displacement compensation[J]. Earthquake engineering and structural dynamics, 2008, 37(15):1785-1800.
[9] ZHAO Jinsong, SHEN Gang, ZHU Weidong, et al. Robust force control with a feed-forward inverse model controller for electro-hydraulic control loading systems of flight simulators[J]. Mechatronics, 2016, 38:42-53.
[10] KERSCHBERG L, RAS Z W, ZEMANKOVA M. Journal of intelligent information systems integrating artificial intelligence and database technologies[J]. Journal of intelligent information systems, 2011, 37(1):119.
[11] WANG Chengwen, QUAN Long, JIAO Zongxia, et al. Nonlinear adaptive control of hydraulic system with observing and compensating mismatching uncertainties[J]. IEEE transactions on control systems technology, 2018, 26(3):927-938.
[12] LI Jianying, SHAO Junpeng, WANG Zhongwen, et al. Study of electro-hydraulic force servo control system based on fuzzy control[C]//Proceedings of 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Shanghai, 2009:688-693.
[13] YAO Jianjun, WANG Xiancheng, HU Shenghai, et al. Adaline neural network-based adaptive inverse control for an electro-hydraulic servo system[J]. Journal of vibration and control, 2011, 17(13):2007-2014.
[14] JIN Xiangjun, SHAO Jie, ZHANG Xin, et al. Modeling of nonlinear system based on deep learning framework[J]. Nonlinear dynamics, 2016, 84(3):1327-1340.
[15] CHEN Hongjun, YANG Qihui, SUN Bo, et al. Synchronous control strategy for three-servo networked control system[C]//Proceedings of 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang:IEEE, 2015.
[16] YANG Yang, BALAKRISHNAN S N, TANG Lei, et al. Electro-hydraulic piston control using neural MRAC based on a modified state observer[C]//Proceedings of the 2011 American Control Conference. San Francisco, 2011:25-30.
[17] 顧偉偉, 姚建勇, 馬大為. 具有狀態約束的電液伺服系統模型參考魯棒自適應控制[J]. 液壓與氣動, 2018(3):10-15. GU Weiwei, YAO Jianyong, MA Dawei. Model reference robust adaptive control for electro-hydraulic servo system with state constraints[J]. Chinese hydraulics & pneumatics, 2018(3):10-15.
[18] YUE Qianjin, LU Qingzhen, YAN Jun, et al. Tension behavior prediction of flexible pipelines in shallow water[J]. Ocean engineering, 2013, 58:201-207.
[19] KUMAR K, BOTSIS J. Contact stresses in multilayered strands under tension and torsion[J]. Journal of applied mechanics, 2001, 68(3):432-440.
[20] JUNG S M, PARK P. Stabilization of a bias-compensated normalized least-mean-square algorithm for noisy inputs[J]. IEEE transactions on signal processing, 2017, 65(11):2949-2961.
[21] FAN Lu, JIA Lijuan, TAO Ran, et al. Distributed bias-compensated normalized least-mean squares algorithms with noisy input[J]. Science China information sciences, 2018, 61(11):112210.
[22] ZHANG Sheng, ZHENG Weixing, Zhang Jiashu, et al. A family of robust M-shaped error weighted least mean square algorithms:performance analysis and echo cancellation application[J]. IEEE access, 2017, 5:14716-14727.
[23] MORADMAND P A, KHALOOZADEH H. An experimental study of modeling and self-tuning regulator design for an electro-hydro servo-system[C]//Proceedings of 2017 5th International Conference on Control, Instrumentation, and Automation. Shiraz, 2018.
[24] GARANAYAK P, PANDA G. An adaptive linear neural network with least mean Mestimate weight updating rule employed for harmonics identification and power quality monitoring[J]. Transactions of the institute of measurement and control, 2018, 40(6):1936-1949.
[25] CHAN S C, ZHOU Y. On the performance analysis of the least mean Mestimate and normalized least mean Mestimate algorithms with Gaussian inputs and additive Gaussian and contaminated Gaussian noises[J]. Journal of signal processing systems, 2010, 60(1):81-103.
[26] AL SAAIDEH M, FEILAT E A, ABU-AL-NADI D I, et al. Lightning impulse parameter estimation using nonlinear least squares algorithm[C]//Proceedings of 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). Amman:IEEE, 2019.
[27] LI Shi, ZOU Changfu, KVPPER M, et al. Model-based state of charge estimation algorithms under various current patterns[J]. Energy procedia, 2019, 158:2806-2811.
[28] LI Jie, ZENG Tao, LI Xiang, et al. Real-time fast polarization tracking based on polarization phase locking least mean square algorithm[J]. Optics express, 2019, 27(16):22116-22126.

相似文獻/References:

[1]李志剛,賈鵬,王洪海,等.水下生產系統發展現狀和研究熱點[J].哈爾濱工程大學學報,2019,40(05):944.[doi:10.11990/jheu.201812011]
 LI Zhigang,JIA Peng,WANG Honghai,et al.Development trend and active research areas of subsea production system[J].Journal of Harbin Engineering University,2019,40(5):944.[doi:10.11990/jheu.201812011]

備注/Memo

備注/Memo:
收稿日期:2019-10-11。
基金項目:國家自然科學基金項目(51605431);寧波市自然科學基金項目(20191JCGY10625).
作者簡介:李偉,男,教授,博士生導師;王賢成,男,講師,碩士生導師.
通訊作者:王賢成,E-mail:wxc@nit.net.cn.
更新日期/Last Update: 2021-04-26
看真人视频a级毛片