[1]賴芬,王鳳鳴,朱相源,等.基于E/CRC磨損模型的離心泵壁面磨損特性研究[J].哈爾濱工程大學學報,2021,42(5):719-728.[doi:10.11990/jheu.201907031]
 LAI Fen,WANG Fengming,ZHU Xiangyuan,et al.Erosion characteristics of centrifugal pumps based on E/CRC erosion model[J].Journal of Harbin Engineering University,2021,42(5):719-728.[doi:10.11990/jheu.201907031]
點擊復制

基于E/CRC磨損模型的離心泵壁面磨損特性研究(/HTML)
分享到:

《哈爾濱工程大學學報》[ISSN:1006-6977/CN:61-1281/TN]

卷:
42
期數:
2021年5期
頁碼:
719-728
欄目:
出版日期:
2021-05-05

文章信息/Info

Title:
Erosion characteristics of centrifugal pumps based on E/CRC erosion model
作者:
賴芬 王鳳鳴 朱相源 常沛然 李國君
西安交通大學 熱流科學與工程教育部重點實驗室, 陜西 西安 710049
Author(s):
LAI Fen WANG Fengming ZHU Xiangyuan CHANG Peiran LI Guojun
MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
關鍵詞:
離心泵液固兩相流固體顆粒磨損特性磨損模型磨損形態最大磨損率顆粒粒徑顆粒濃度
分類號:
TH311
DOI:
10.11990/jheu.201907031
文獻標志碼:
A
摘要:
為了探索離心泵內液固兩相流動及固體顆粒引起的壁面磨損特性,本文基于E/CRC磨損模型進行了數值預測,獲得了設計工況下離心泵各個區域的磨損形態并對比不同區域的最大和平均磨損率,分析了磨損率變化規律并預測了最大磨損率發生位置,討論了顆粒粒徑及濃度對離心泵葉輪磨損特性的影響。結果表明:磨損最嚴重的區域在葉片前緣及葉片壓力側尾緣附近;后蓋板的平均磨損率最大,葉片及后蓋板的最大磨損率最大,最大磨損率在葉片與后蓋板交界處葉片曲率角59.8°附近;顆粒粒徑及濃度均對葉輪磨損特性有顯著的影響,隨顆粒粒徑的增大,前蓋板及葉片的磨損區域面積顯著減小,而后蓋板的磨損區域面積幾乎不變,磨損率呈減小趨勢;隨顆粒濃度的增大,葉輪磨損區域面積幾乎不變,磨損率呈增大趨勢。

參考文獻/References:

[1] 黃先北, 楊碩, 劉竹青, 等. 基于顆粒軌道模型的離心泵葉輪泥沙磨損數值預測[J]. 農業機械學報, 2016, 47(8):35-41. HUANG Xianbei, YANG Shuo, LIU Zhuqing, et al. Numerical simulation of erosion prediction in centrifugal pump based on particle track model[J]. Transactions of the Chinese society for agricultural machinery, 2016, 47(8):35-41.
[2] 黃建德, 張奎亭, 陳漣. 含砂水對離心泵葉輪磨損的實驗研究[J]. 工程熱物理學報, 1999(4):448-452. HUANG Jiande, ZHANG Kuiting, CHEN Lian. Experimental studies on the damage of centrifugal impeller due to the sand mixed in water[J]. Journal of engineering thermophysics, 1999(4):448-452.
[3] WILSON K C, ADDIE G R, SELLGREN A, et al. Pump selection and cost considerations[M]//WILSON K C, ADDIE G R, SELLGREN A, et al. Slurry Transport Using Centrifugal Pumps. Boston:Springer, 2006:338-352.
[4] TIAN H H, ADDIE G R, PAGALTHIVARTHI K V. Determination of wear coefficients for erosive wear prediction through Coriolis wear testing[J]. Wear, 2005, 259(1/2/3/4/5/6):160-170.
[5] 陳紅生, 朱祖超, 王樂勤. 固液兩相流離心泵磨損機理和葉輪的設計[J]. 水利學報, 1999(8):67-71. CHEN Hongsheng, ZHU Zuchao, WANG Leqin. Mechanism of wearing in two-phase flow centrifugl pumps and design of impellers[J]. Journal of hydraulic engineering, 1999(8):67-71.
[6] WIEDENROTH W. Wear tests executed with a 125 mm I.D. loop and a model dredge pump[C]//Proceedings of the 19 International Conference on Hydraulic Transport of Solids in Pipes. Rome, Italy, 1984.
[7] FINNIE I. Erosion of surfaces by solid particles[J]. Wear, 1960, 3(2):87-103.
[8] GRANT G, TABAKOFF W. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. Journal of aircraft, 1975, 12(5):471-478.
[9] NOON A A, KIM M H. Erosion wear on centrifugal pump casing due to slurry flow[J]. Wear, 2016, 364-365:103-111.
[10] 劉娟, 許洪元, 唐澍, 等. 離心泵內固體顆粒運動規律與磨損的數值模擬[J]. 農業機械學報, 2008, 39(6):54-59. LIU Juan, XU Hongyuan, TANG Shu, et al. Numerical simulation of erosion and particle motion trajectory in centrifugal pump[J]. Transactions of the Chinese society for agricultural machinery, 2008, 39(6):54-59.
[11] 何創新. 單級雙吸中開式離心泵的水力優化及泥沙磨損研究[D]. 武漢:華中科技大學, 2013. HE Chuangxin. Hydraulic optimization of single stage double suction split centrifugal pumps and study on sediment wear[D]. Wuhan:Huazhong University of Science and Technology, 2013.
[12] ZHANG Y, REUTERFORS E P, MCLAURY B S, et al. Comparison of computed and measured particle velocities and erosion in water and air flows[J]. Wear, 2007, 263(1/2/3/4/5/6):330-338.
[13] PENG Wenshan, CAO Xuewen. Numerical simulation of solid particle erosion in pipe bends for liquid-solid flow[J]. Powder technology, 2016, 294:266-279.
[14] 聶德明. 含泥沙水對離心泵的磨損[J]. 水泵技術, 1992(3):61-64. NIE Deming. Wear of sandy water on centrifugal pump[J]. Pump technology, 1992(3):61-64.
[15] 顧四行. 抽黃水泵泥砂磨損及其對策[J]. 水泵技術, 1994(2):28-34.GU Sihang. Sediment abrasion and countermeasures of pumping yellow river pump[J]. Pump technology, 1994(2):28-34.
[16] ANSYS Fluent 17.0 theory guide[Z]. ANSYS Inc, 2016.
[17] PAGALTHIVARTHI K V, GUPTA P K, TYAGI V, et al. CFD prediction of erosion wear in centrifugal slurry pumps for dilute slurry flows[J]. The journal of computational multiphase flows, 2011, 3(4):225-245.
[18] KUMAR S, GANDHI B K, MAHAPATRA S K. Investigation on centrifugal slurry pump performance with variation of operating speed[J]. International journal of mechanical and materials engineering, 2013, 8(1):40-47.
[19] MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of fluid mechanics, 1972, 55(2):193-208.
[20] ZENG L, ZHANG G A, GUO X P. Erosion-corrosion at different locations of X65 carbon steel elbow[J]. Corrosion science, 2014, 85:318-330.

相似文獻/References:

[1]劉占生,劉全忠,王洪杰.離心泵變工況流場及葉輪流體激振力研究[J].哈爾濱工程大學學報,2008,(12):1304.
 LIU Zhan-sheng,LIU Quan-zhong,WANG Hong-jie.Analysis of off-design flow fields in centrifugal pumps and hydrodynamic forces on impellers[J].Journal of Harbin Engineering University,2008,(5):1304.
[2]王凱,劉厚林,袁壽其,等.離心泵葉輪軸面圖的3點水力優化[J].哈爾濱工程大學學報,2012,(07):834.[doi:10.3969/j.issn.1006-7043.201108007]
 WANG Kai,LIU Houlin,YUAN Shouqi,et al.Three-point hydraulic optimization of impeller meridional plane for centrifugal pumps[J].Journal of Harbin Engineering University,2012,(5):834.[doi:10.3969/j.issn.1006-7043.201108007]
[3]王勇,劉厚林,袁壽其,等.葉片數對離心泵空化誘導振動噪聲的影響[J].哈爾濱工程大學學報,2012,(11):1405.[doi:10.3969/j.issn.1006-7043.201111073]
 WANG Yong,LIU Houlin,YUAN Shouqi,et al.Effects of the blade number on cavitation-induced vibration and noise of centrifugal pumps[J].Journal of Harbin Engineering University,2012,(5):1405.[doi:10.3969/j.issn.1006-7043.201111073]
[4]付強,袁壽其,朱榮生,等.離心泵氣液混輸瞬態過渡過程水力特性研究[J].哈爾濱工程大學學報,2012,(11):1428.[doi:10.3969/j.issn.1006-7043.201110027]
 FU Qiang,YUAN Shouqi,ZHU Rongsheng,et al.Hydraulic characteristics of transient transition process of gas-liquid mixed flow in a centrifugal pump[J].Journal of Harbin Engineering University,2012,(5):1428.[doi:10.3969/j.issn.1006-7043.201110027]
[5]牟介剛,劉菲,谷云慶,等.壓水室隔舌安放角對離心泵無過載性能的影響[J].哈爾濱工程大學學報,2015,(08):1092.[doi:10.3969/j.issn.1006-7043.201405007]
 MOU Jiegang,LIU Fei,GU Yunqing,et al.Effect of the setting angle of a volute tongue on non-overloading performance of centrifugal pumps[J].Journal of Harbin Engineering University,2015,(5):1092.[doi:10.3969/j.issn.1006-7043.201405007]
[6]牟介剛,陳瑩,谷云慶,等.懸臂式離心泵流固耦合特性研究[J].哈爾濱工程大學學報,2016,37(08):1111.[doi:10.11990/jheu.201506030]
 MOU Jiegang,CHEN Ying,GU Yunqing,et al.Research on fluid-structure interaction characteristics of cantilever centrifugal pump[J].Journal of Harbin Engineering University,2016,37(5):1111.[doi:10.11990/jheu.201506030]
[7]顧延東,袁壽其,裴吉,等.泵葉輪出口寬度對蝸殼內壓力脈動強度的影響[J].哈爾濱工程大學學報,2017,38(07):1023.[doi:10.11990/jheu.201608030]
 GU Yandong,YUAN Shouqi,PEI Ji,et al.Effects of the outlet width of pump impeller on pressure fluctuation intensity in volute[J].Journal of Harbin Engineering University,2017,38(5):1023.[doi:10.11990/jheu.201608030]
[8]賀國,曹玉良,明廷鋒,等.基于改進倍頻帶特征的離心泵空化狀態識別[J].哈爾濱工程大學學報,2017,38(08):1263.[doi:10.11990/jheu.201611027]
 HE Guo,CAO Yuliang,MING Tingfeng,et al.Cavitation state recognition of centrifugal pump based on features of modified octave bands[J].Journal of Harbin Engineering University,2017,38(5):1263.[doi:10.11990/jheu.201611027]
[9]劉棟,傅彬浩,湯承,等.離心泵內鹽析顆粒粒徑分布及運動特性分析[J].哈爾濱工程大學學報,2018,39(11):1848.[doi:10.11990/jheu.201707066]
 LIU Dong,FU Binhao,TANG Cheng,et al.Distribution and motion feature of crystallization particle in centrifugal pump[J].Journal of Harbin Engineering University,2018,39(5):1848.[doi:10.11990/jheu.201707066]
[10]王勇,嚴駿,王健,等.轉子—定子型離心式水力空化發生器非定?栈纬蓹C制[J].哈爾濱工程大學學報,2018,39(12):1887.[doi:10.11990/jheu.201707108]
 WANG Yong,YAN Jun,WANG Jian,et al.Unsteady cavitation patterns in a rotor-stator centrifugal hydrodynamic cavitation generator[J].Journal of Harbin Engineering University,2018,39(5):1887.[doi:10.11990/jheu.201707108]

備注/Memo

備注/Memo:
收稿日期:2019-07-08。
基金項目:國家重點研發計劃(2016YFB0200901).
作者簡介:賴芬,女,博士研究生;李國君,男,教授,博士生導師.
通訊作者:李國君,E-mail:liguojun@mail.xjtu.edu.cn.
更新日期/Last Update: 2021-04-26
看真人视频a级毛片